为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:)
【2015江苏高考,23】(本小题满分10分)已知集合,
,
,令
表示集合
所含元素的个数.
(1)写出的值;
(2)当时,写出
的表达式,并用数学归纳法证明.
【2015高考湖南,理18】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求
的分布列和数学期望.
【2015高考广东,理17】某工厂36名工人的年龄数据如下表:
工人编号 |
年龄 |
工人编号 |
年龄 |
工人编号 |
年龄 |
工人编号 |
年龄 |
1 |
40 |
10 |
36 |
19 |
27 |
28 |
34 |
2 |
44 |
11 |
31 |
20 |
43 |
29 |
39 |
3 |
40 |
12 |
38 |
21 |
41 |
30 |
43 |
4 |
41 |
13 |
39 |
22 |
37 |
31 |
38 |
5 |
33 |
14 |
43 |
23 |
34 |
32 |
42 |
6 |
40 |
15 |
45 |
24 |
42 |
33 |
53 |
7 |
45 |
16 |
39 |
25 |
37 |
34 |
37 |
8 |
42 |
17 |
38 |
26 |
44 |
35 |
49 |
9 |
43 |
18 |
36 |
27 |
42 |
36 |
39 |
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的平均值和方差
;
(3)36名工人中年龄在与
之间有多少人?所占的百分比是多少(精确到0.01%)?
【2015高考北京,理16】,
两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
组:10,11,12,13,14,15,16
组:12,13,15,16,17,14,
假设所有病人的康复时间互相独立,从,
两组随机各选1人,
组选出的人记为甲,
组选出的人记为乙.
(Ⅰ)求甲的康复时间不少于14天的概率;
(Ⅱ)如果,求甲的康复时间比乙的康复时间长的概率;
(Ⅲ)当为何值时,
,
两组病人康复时间的方差相等?(结论不要求证明)
【2015高考新课标1,理19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量
(
=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
46.6 |
56.3 |
6.8 |
289.8 |
1.6 |
1469 |
108.8 |
表中,
=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,