已知椭圆
:
的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)过
的直线
交椭圆
于
两点,则
的内切圆的面积是否存在最大值,若存在其最大值及此时的直线方程;若不存在,请说明理由.
(本小题满分12分)
已知函数
,当
时,有极大值
.
(1)求
的值; (2)求函数
的极小值。
(1) 以直角坐标系的原点
为极点,
轴的正
半轴为极
轴。已知点
的直角坐标为(1,-5),点
的极坐标为
若直线
过点
,且倾斜角为
,圆
以
为圆心、
为半径。(I)求直线
的参数方程和圆
的极坐标方程;(II)试判定直线
和圆
的位置关系.
(2)把曲线
先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于
轴的反射变换变为曲线
,求曲线
的方程.
(3)关于
的一元二次方程
对任意
无实根,求实数
的取值范围.
已知函数
.(Ⅰ) 若
为
的极值点,求实数
的值;(Ⅱ) 若
在
上为增函数,求实数
的取值范围;
(Ⅲ) 若
时,方程
有实根,求实数
的取值范围。
设椭圆
的离心率
,右焦点到直线
的距离
为坐标原点。
(I)求椭圆
的方程;
(II)过点
作两条互相垂直的射线,与椭圆
分别交于
两点,证明点
到直
线
的距离为定值,并求弦
长度的最小值
为了迎接2009年10月1日建国60周年,某城市为举办的大型庆典活动准备了四种保证安全的方案,列表如下:
| 方案 |
A |
B |
C |
D |
| 经费 |
300万元 |
400万元 |
500万元 |
600万元 |
| 安全系数 |
0.6 |
0.7 |
0.8 |
0.9 |
其中安全系数表示实施此方案能保证安全的系数,每种方案相互独立,每种方案既可独立用,又可以与其它方案合用,合用时,至少有一种方案就能保证整个活动的安全。
(I)若总经费在1200万元内(含1200万元),如何组合实施方案可以使安全系数最高?
(II)要保证安全系数不小于0.99,至少需要多少经费?