已知抛物线.
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线
相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为
,若过
点的直线与抛物线相交于
两点,若
,求直线
的斜率;
(3)若过点且相互垂直的两条直线
,抛物线与
交于点
与
交于点
.
证明:无论如何取直线,都有
为一常数.
(本小题满分12分)如图是图
的三视图,三棱锥
中,
,
分别是棱
,
的中点.
(1)求证:平面
;
(2)求三棱锥的体积.
(本小题满分12分)如图所示,在四边形中,
,且
,
,
.
(1)求的面积;
(2)若,求
的长.
(本小题满分12分)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张.每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.
(1)求某节目的投票结果是最终获一等奖的概率;
(2)求该节目投票结果中所含“获奖”和“待定”票票数之和的分布列及数学期望.
(本小题满分12分)如图,在斜三棱柱中,
是
的中点,
⊥平面
,
,
.
(1)求证:;
(2)求二面角的余弦值.
已知各项均不为零的数列的前
项和为
,且
,其中
.
(1)求证:成等差数列;
(2)求证:数列是等差数列;
(3)设数列满足
,且
为其前
项和,求证:对任意正整数
,不等式
恒成立.