已知抛物线.
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线
相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为
,若过
点的直线与抛物线相交于
两点,若
,求直线
的斜率;
(3)若过点且相互垂直的两条直线
,抛物线与
交于点
与
交于点
.
证明:无论如何取直线,都有
为一常数.
函数y=,试写出给定自变量x,求函数值y的算法
写出解方程2x+7=0的一个算法.
已知一个等边三角形的周长为a,求这个三角形的面积.设计一个算法解决这个问题.
已知曲线C1:(
为参数),曲线C2:
(t为参数).
(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;
(2)若把C1,C2上各点的纵坐标都拉伸为原来的两倍,分别得到曲线.写出
的参数方程.
与
公共点的个数和C
公共点的个数是否相同?说明你的理由.
已知函数y=f(x)是定义在区间[-,
]上的偶函数,且
x∈[0,]时,
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图像上,顶点C,D在x轴上,求矩形ABCD面积的最大值.