第16届亚运会于2010年11月12日在广州举办,运动会期间来自广州大学和中山大学的共计6名大学生志愿者将被随机平均分配到跳水、篮球、体操这三个比赛场馆服务,且跳水场馆至少有一名广州大学志愿者的概率是.
(1)求6名志愿者中来自广州大学、中山大学的各有几人?
(2)设随机变量X为在体操比赛场馆服务的广州大学志愿者的人数,求X的分布列及均值.
在直角坐标系中,曲线
的参数方程为
,
以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
⑴ 求曲线的普通方程和曲线
的直角坐标方程;
⑵ 当时,曲线
和
相交于
、
两点,求以线段
为直径的圆的直角坐标方程.
如图,是
的直径,弦
与
垂直,并与
相交于点
,点
为弦
上异于点
的任意一点,连结
、
并延长交
于点
、
.
⑴ 求证:、
、
、
四点共圆;
⑵ 求证:.
已知函数.
⑴ 求函数的单调区间;
⑵ 如果对于任意的,
总成立,求实数
的取值范围;
⑶ 是否存在正实数,使得:当
时,不等式
恒成立?请给出结论并说明理由.
如图,曲线与曲线
相交于
、
、
、
四个点.
⑴ 求的取值范围;
⑵ 求四边形的面积的最大值及此时对角线
与
的交点坐标.
如图,是矩形
中
边上的点,
为
边的中点,
,现将
沿
边折至
位置,且平面
平面
.
⑴ 求证:平面平面
;
⑵ 求四棱锥的体积.