设全集为,集合
,
.
(1)求如图阴影部分表示的集合;
(2)已知,若
,求实数
的取值范围.
(12分)从名男同学中选出
人,
名女同学中选出
人,并将选出的
人排成一排.
(1)共有多少种不同的排法?
(2)若选出的名男同学不相邻,共有多少种不同的排法?(用数字表示)
(本大题满分14分)
如图,已知直线L:过椭圆C:
的右焦点F,
且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E.
(Ⅰ)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(Ⅱ)若为x轴上一点;
求证: A、N、E三点共线.
(本小题满分14分)
已知函数,
为实数)有极值,且在
处的切线与直线
平行.
(1)求实数a的取值范围;
(2)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(本小题满分14分)
为积极响应国家“家电下乡”政策的号召,某厂家把总价值为10万元的A、B两种型号的电视机投放市场,并且全部被农民购买。若投放的A、B两种型号的电视机价值都不低于1万元,农民购买A、B两种型号的电视机将按电视机价值的一定比例给予补贴,补贴方案如下表所示,设投放市场的A、B型号电视机的价值分别为万元,
万元,农民得到的补贴为
万元,解答以下问题.
A型号 |
B型号 |
|
电视机价值(万元) |
![]() |
![]() |
农民获得补贴(万元) |
![]() |
![]() |
(1) 用的代数式表示
(2) 当取何值时,
取最大值并求出其最大值(精确到0.1,参考数据:
)
(本小题满分14分)
如图,四边形为矩形,
且
平面
,
为
上的点,且
平面
(1)设点为线段
的中点,点
为线段
的中点,求证:
∥平面
(2)求证
(3)当时,求三棱锥
的体积。