已知是椭圆E:
的两个焦点,抛物线
的焦点为椭圆E的一个焦点,直线y=
上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(1)求椭圆E的方程;
(2)如图,过点的动直线
交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
(本小题满分10分)选修4—5,不等式选讲
已知函数
(1) 解关于的不等式
(2)若函数的图象恒在函数
的上方,求实数
的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程
以直角坐标系的原点为极点,
轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
),若直线
过点P,且倾斜角为
,圆C以M为圆心,4为半径。
(1)求直线的参数方程和圆C的极坐标方程。
(2)试判定直线与圆C的位置关系。
(本小题满分10分)选修4-1:几何证明选讲
如图,的角平分线
的延长线交它的外接圆于点
(Ⅰ)证明:∽△
;
(Ⅱ)若的面积
,求
的大小.
(本小题满分12分)已知函数.
(1)求在区间[-2,1]上的最大值;
(2)若过点P(1,t)存在3条直线与曲线相切,求t的取值范围;
(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线相切?(只需写出结论)
(本小题满分12分)已知函数=
,其中a∈R,且曲线y=
在点(
,
)处的切线垂直于直线
.
(1)求的值;
(2)求函数的单调区间与极值.