如下图,在四棱柱中,底面
和侧面
都
是矩形,是
的中点,
,
.
(1)求证:
(2)求证:平面
;
(3)若平面与平面
所成的锐二面角的大小为
,求线段
的长度.
已知二次函数同时满足:①不等式
的解集有且只有一个元素;②在定义域内存在
,使得不等式
成立。设数列
的前n项和
。(1)求
的解析式;(2)求数列
的通项公式;(3)设
,
,
前n项和为
,
(
恒成立,求实数m的取值范围.
某车队2008年初以98万元购进一辆大客车,并投入营运,第一年需支出各种费用12万元,从第二年起每年支出费用均比上一年增加4万元,该车投入营运后每年的票款收入为50万元,设营运年该车的盈利总额为
万元.
(1)写出关于
的函数关系式;(2)从哪一年开始,该汽车开始获利;(3)有两种方案处理该车:方案1——当盈利总额达最大值时,年底以20万元的价格卖掉该车;
方案2——当年均盈利额最大时,年底以40万元的价格卖掉该车.试问车队以哪种方案处理该车获利较大?
已知函数,
(1)当
时,求
的最大值和最小值(2)若
在
上是单调增函数,且
,求
的取值范围.
已知函数的定义域为A,指数函数
(
>0且
≠1)(
)的值域为B.(1)若
,求
;(2)若
=(
,2),求
的值.
.数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.(Ⅰ)求数列
的通项公式;(Ⅱ)设数列
的前
项和为
,且
,求证:对任意实数
(
是常数,
=2.71828
)和任意正整数
,总有
2;(Ⅲ) 正数数列
中,
.求数列
中的最大项.