为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?
已知函数在一个周期内的图象下图所示。 (1)求函数的解析式; (2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。
已知函数. (1)求函数f(x)的最小正周期; (2)求函数f(x)的最大最小值及相应的x的值; (3)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
已知函数. (Ⅰ)求的定义域; (Ⅱ)若角在第一象限且,求.
化简:
已知函数,在时取得极值. (Ⅰ)求函数的解析式; (Ⅱ)若时,恒成立,求实数m的取值范围; (Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号