游客
题文

椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分14分)设数列的首项R),且(Ⅰ)若;(Ⅱ)若,证明:;(Ⅲ)若,求所有的正整数,使得对于任意,均有成立.

(本小题满分14分)
已知函数处取得极值.
(Ⅰ)求的值;
(Ⅱ)若当恒成立,求的取值范围;
(Ⅲ)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.

(本小题满分13分)已知各项都不相等的等差数列的前六项和为60,且的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和

(本小题满分13分)如图,正三棱柱中,D是BC的中点,

(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.

(本小题13分) 已知函数.(Ⅰ)求函数图象的对称轴方程;(Ⅱ)求的单调增区间;(Ⅲ)当时,求函数的最大值,最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号