为了解心肺疾病是否与年龄相关,现随机抽取了40名市民,得到数据如下表:
|
患心肺疾病 |
不患心肺疾病 |
合计 |
大于40岁 |
16 |
|
|
小于等于40岁 |
|
12 |
|
合计 |
|
|
40 |
已知在全部的40人中随机抽取1人,抽到不患心肺疾病的概率为
(1)请将列联表补充完整;
(2)已知大于40岁患心肺疾病市民中,经检查其中有4名重症患者,专家建议重症患者住院治疗,现从这16名患者中选出两名,记需住院治疗的人数为,求
的分布列和数学期望;
(3)能否在犯错误的概率不超过0.01的前提下认为患心肺疾病与年龄有关?
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
如图所示,是⊙
直径,弦
的延长线交于
,
垂直于
的延长线于
.求证:
(1);
(2).
设函数(
),其导函数为
.
(1)当时,求
的单调区间;
(2)当时,
,求证:
.
设分别是椭圆
的左,右焦点.
(1)若是椭圆在第一象限上一点,且
,求
点坐标;
(2)设过定点的直线
与椭圆交于不同两点
,且
为锐角(其中
为原点),求直线
的斜率
的取值范围.
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次任意抽取3道题,独立作答,然后由乙回答剩余3题,每人答对其中的2题就停止答题,即闯关成功。已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是.
(1)求甲、乙至少有一人闯关成功的概率;
(2)设甲答对题目的个数为,求
的分布列及数学期望.
如图,已知三棱柱的侧棱与底面垂直,且
,
,
,点
分别为
、
、
的中点.
(1)求证:平面
;
(2)求证:;
(3)求二面角的余弦值.