为了解心肺疾病是否与年龄相关,现随机抽取了40名市民,得到数据如下表:
|
患心肺疾病 |
不患心肺疾病 |
合计 |
大于40岁 |
16 |
|
|
小于等于40岁 |
|
12 |
|
合计 |
|
|
40 |
已知在全部的40人中随机抽取1人,抽到不患心肺疾病的概率为
(1)请将列联表补充完整;
(2)已知大于40岁患心肺疾病市民中,经检查其中有4名重症患者,专家建议重症患者住院治疗,现从这16名患者中选出两名,记需住院治疗的人数为,求
的分布列和数学期望;
(3)能否在犯错误的概率不超过0.01的前提下认为患心肺疾病与年龄有关?
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
(本小题满分12分)已知函数,在区间
内最大值为
,
(1)求实数的值;
(2)在中,三内角A、B、C所对边分别为
,且
,求
的取值范围.
如图为的图像的一段.(
)
(1)求其解析式;
(2)若将的图像向左平移
个单位长度后得
,求
的对称轴方程.
已知等差数列的首项为23,公差为整数,且第6项为正数,从第7项起为负数。
(1)求此数列的公差d;
(2)当前n项和是正数时,求n的最大值
已知函数.
(I)求函数的单调区间;
(Ⅱ)若恒成立,试确定实数k的取值范围;
(Ⅲ)证明:①上恒成立 ;
②.
已知函数.
(1)求函数f(x)的单调区间;
(2)设m>0,求函数f(x)在[m,2m]上的最大值;
(3)证明:对∀n∈N*,不等式恒成立.