已知椭圆的离心率
,长轴的左右端点分别为
,
.
(1)求椭圆的方程;
(2)设动直线与曲线
有且只有一个公共点
,且与直线
相交于点
.问在
轴上是否存在定点
,使得以
为直径的圆恒过定点
,若存在,求出
点坐标;若不存在,说明理由.
(本小题10分)
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC.
(1)求证:平面ABFE⊥平面DCFE;
(2)求四面体B—DEF的体积.
(本小题10分)
已知圆C上一点,直线
平分圆C,且圆C与直线
相交的弦长为
,
求圆C的方程.
(本小题8分)
如图,正方形ABCD和四边形ACEF所在的平面互相垂直. EF//AC,AB=,CE=EF=1,
.
(1)求证:AF//平面BDE;
(2)求异面直线AB与DE所成角的余弦值.
(本小题6分)
如图,矩形的两条对角线相交于点
,
边所在直线的方程为
, 点
在
边所在直线上.求:
(1)边所在直线的方程;
(2)边所在的直线方程.
(本小题满分12分)已知且
,
(1)求函数的表达式; (2)判断
的奇偶性与单调性,并说明理由;
(3)对于函数,当
时,
恒成立,求
的取值范围.