已知函数,m∈R,且
的解集为
.
(1)求的值;
(2)若+,且
,求
的最小值.
设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点,已知|a|+|b|=4.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.
如图,四边形ABCD是边长为2的正方形,△ABE为等腰三角形,AE=BE,平面ABCD⊥平面ABE,点F在CE上,且BF⊥平面ACE.
(Ⅰ)判断平面ADE与平面BCE是否垂直,并说明理由;
(Ⅱ)求点D到平面ACE的距离.
甲、乙两名射击运动员进行射击选拔比赛,已知甲、乙两运动员射击的环数稳定在6,7,8,9,10环,其射击比赛成绩的分布列如下:
甲运动员:
ξ |
6 |
7 |
8 |
9 |
10 |
P |
0.16 |
0.14 |
0.42 |
0.1 |
0.18 |
乙运动员:
η |
6 |
7 |
8 |
9 |
10 |
P |
0.19 |
0.24 |
0.12 |
0.28 |
0.17 |
(Ⅰ)若甲、乙两运动员各射击一次,求同时击中9环以上(含9环)的概率;
(Ⅱ)若从甲、乙两运动员中只能挑选一名参加某项国际比赛,你认为让谁参加比赛较合适?并说明理由.
设角A,B,C为△ABC的三个内角.
(Ⅰ)若,求角A的大小;
(Ⅱ)设,求当A为何值时,f(A)取极大值,并求其极大值.
设数列的前
项和为
,且满足
,
.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)若正项数列满足
,
求证: .