在如图所示的几何体中,四边形为正方形,四边形
为等腰梯形,
,
,
,
.
(1)求证:平面
;
(2)求四面体的体积;
(3)线段上是否存在点
,使
平面
?请证明你的结论.
已知函数的图象经过点
和
,记
(
)
(1)求数列的通项公式;
(2)设,若
,求
的最小值;
(3)求使不等式对一切
均成立的最大实数
.
已知椭圆C:(a>b>0)的离心率为
,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
设函数
(1)求函数极值;
(2)当恒成立,求实数a的取值范围.
(本题满分14分)
如图所示,在正三棱柱ABC -A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点。
(I)求证:A1B1//平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积。
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.