如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.
(1)若直线PQ过定点,求点A的坐标;
(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.
(本小题满分13分)
已知抛物线,过点
的直线
与抛物线交于
、
两点,且直线
与
轴交于点
.(1)求证:
,
,
成等比数列;
(2)设,
,试问
是否为定值,若是,求出此定值;若不是,请说明理由.
(本小题满分12分)
已知函数.
(1)若函数的图象在
处的切线斜率为
,求实数
的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数在
上是减函数,求实数
的取值范围.
(本小题满分12分)
为备战2012奥运会,甲、乙两位射击选手进行了强化训练. 现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)画出甲、乙两位选手成绩的茎叶图;(用茎表示成绩的整数部分,用叶表示成绩的小数部分)
(2)现要从中选派一人参加奥运会,从平均成绩和发挥稳定性角度考虑,你认为派哪位选手参加合理? 简单说明理由.
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为,求
的分布列及均值E
.
(本小题满分12分)已知点是圆
上任意一点,点
与点
关于原点对称.线段
的中垂线
分别与
交于
两点.
(1)求点的轨迹
的方程;
(2)斜率为1的直线与曲线
交于
两点,若
(
为坐标原点),求直线
的方程.
(本小题满分12分)如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,
,E是SA的中点.
(1)求证:平面BED平面SAB;
(2)求直线SA与平面BED所成角的大小.