学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有
改选A菜。用
分别表示第
个星期选A的人数和选B的人数.
⑴试用表示
,判断数列
是否成等比数列并说明理由;
⑵若第一个星期一选A神菜的有200人,那么第10个星期一选A种菜的大约有多少人?
如图,我市拟在长为的道路
的一侧修建一条运动赛道。赛道的前一部分为曲线段
,该曲线段为函数
的图像,且图像的最高点为
;赛道的后一部分为折线段
,为保证参赛运动员的安全,限定
。
(1)求的值和
两点间的距离
(2)应如何设计,才能使折线段赛道最长
在中,
为锐角,角
所对应的边分别为
,且
(I)求的值;
(II)若
,求
的值。
已知函数
(Ⅰ)求
的单调区间;
(Ⅱ)记
在区间
(
)上的最小值为
令
.
(ⅰ)如果对一切
,不等式
恒成立,求实数
的取值范围;
(ⅱ)求证:
.
如图,椭圆
的一个焦点是
,
为坐标原点。
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点
的直线
交椭圆于
、
两点,若直线
绕点
任意转动,值有
,求
的取值范围。
某项考试按科目
、科目
依次进行,只有当科目
成绩合格时,才可继续参加科目
的考试。已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。现某人参加这项考试,科目A每次考试成绩合格的概率均为
,科目
每次考试成绩合格的概率均为
,假设各次考试成绩合格与否均互不影响。
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为
,求
的数学期望
。