一个车间为了规定工时定额.需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:
零件数x/个 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
加工时间y/分 |
62 |
68 |
75 |
81 |
89 |
95 |
102 |
108 |
115 |
122 |
(1)y与x是否具有线性相关关系?
(2)如果y与x具有线性相关关系,求回归直线方程;
(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?
(本小题共13分)已知等差数列的前
项和为
,a2=4, S5=35.
(Ⅰ)求数列的前
项和
;
(Ⅱ)若数列满足
,求数列
的前n项和
.
(本小题满分10分)选修4-5:不等式选讲.
已知,不等式
的解集为M.
(1)求M;
(2)当时,证明:
.
(本小题满分10分)选修4-4:坐标系与参数方程.
极坐标系的极点为直角坐标系的原点,极轴为
轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为
.
(1)求C的直角坐标方程;
(2)直线(
为参数)与曲线C交于A,B两点,与
轴交于E,求|EA|+|EB|.
(本小题满分12分)设函数(
为常数).
(1)当时,证明
在[1,+∞)上是单凋递增函数;
(2)若函数有两个极值点
,且
,求证:
.
(本小题满分12分)如图,已知点是离心率为
的椭圆C:
(
)上的一点,斜率为
的直线BD交椭圆C于B,D两点,且A,B,D三点互不重合.
(1)求椭圆C的方程;
(2)求证:直线AB,AD的斜率之和为定值.