已知某地每单位面积菜地年平均使用氮肥量x(kg)与每单位面积蔬菜年平均产量y(t)之间的关系有如下数据:
年份 |
1985 |
1986 |
1987 |
1988 |
1989 |
1990 |
1991 |
1992 |
x(kg) |
70 |
74 |
80 |
78 |
85 |
92 |
90 |
95 |
y(t) |
5.1 |
6.0 |
6.8 |
7.8 |
9.0 |
10.2 |
10.0 |
12.0 |
|
||||||||
年份 |
1993 |
1994 |
1995 |
1996 |
1997 |
1998 |
1999 |
|
x(kg) |
92 |
108 |
115 |
123 |
130 |
138 |
145 |
|
y(t) |
11.5 |
11.0 |
11.8 |
12.2 |
12.5 |
12.8 |
13.0 |
|
(1)求x与y之间的相关系数,并检验是否线性相关;
(2)若线性相关,求蔬菜产量y与使用氮肥量x之间的回归直线方程,并估计每单位面积施肥150 kg时,每单位面积蔬菜的年平均产量.
(已知数据:=101,
≈10.113 3,
=161 125,
=1 628.55,
=16 076.8)
对于数列,规定数列
为数列
的一阶差分数列,其中
;一般地,规定
为
的k阶差分数列,其中
且k∈N*,k≥2。
(1)已知数列的通项公式
。试证明
是等差数列;
(2)若数列的首项a1=―13,且满足
,求数列
及
的通项公式;
(3)在(2)的条件下,判断是否存在最小值;若存在,求出其最小值,若不存在,说明理由。
已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
设{an}是由正数组成的等比数列,Sn是其前n项和,证明:.
求数列:1,a+a2,a2+a3+a4,a3+a4+a5+a6,……(其中a≠0)的前n项和Sn.
过点P(2,3),且在坐标轴上的截距相等的直线方程是 。