为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别 是否需要志愿者 |
男 |
女 |
需要 |
40 |
30 |
不需要 |
160 |
270 |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
附:
P(K2≥x0) |
0.050 |
0.010 |
0.001 |
x0 |
3.841 |
6.635 |
10.828 |
χ2=
已知圆x2+y2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b对称,求k、b的值;
若这时两圆的交点为A、B,求∠AOB的度数.
若动圆C与圆(x-2)2+y2=1外切,且和直线x+1=0相切.求动圆圆心C的轨迹E的方程.
已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆过原点.若存在,求出直线l的方程;若不存在,说明理由
设圆满足(1)y轴截圆所得弦长为2.(2)被x轴分成两段弧,其弧长之比为3∶1,在满足(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
有定点及定直线
,
是
上在第一象限内的点,
交
轴的正半轴于
点,问点
在什么位置时,
的面积最小,并求出最小值.
![]() |