A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为,每道程序中得优、良、中的概率分别为p1、
、p2.
(1)求学生甲不能通过A高校自主招生考试的概率;
(2)设X为学生甲在三道程序中获优的次数,求X的概率分布及数学期望.
、
已知函数,其中
..
(1)当满足什么条件时,
取得极值?
(2)已知,且
在区间
上单调递增,试用
表示出
的取值范围.
(本题满分16分)
数列{an}中,.
(1)求a1,a2,a3,a4;
(2)猜想an的表达式,并用数学归纳法加以证明.
假定某射手每次射击命中的概率为,且只有
发子弹.该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为
求:(1)目标被击中的概率;
(2)的概率分布;
(3)均值.
(本题满分15分,请列式并用数字表示结果,直接写结果不得分)
从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同
选法?
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.
已知z为复数,z+2和
均为实数,其中
是虚数单位
.
(1)求复数z;
(2)若复数在复平面上对应的点在第一象限,求实数a的取值范围.