已知数列{an}的各项均为正数的等比数列,且a1a2=2,a3a4=32,
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Sn=n2,(n∈N*),求数列{anbn}的前n项和Tn.
(本小题满分12分)如图所示,正方形和矩形
所在平面相互垂直,
是
的中点.
(1)求证:;
(2)若直线与平面
成45o角,求异面直线
与
所成角的余弦值.
(本小题满分12分)已知直线,
(1)若直线过点(3,2)且
,求直线
的方程;
(2)若直线过
与直线
的交点,且
,求直线
的方程.
(本小题满分10分)如图甲,⊙的直径
,圆上两点
在直径
的两侧,使
,
.沿直径
折起,使两个半圆所在的平面互相垂直(如图乙),
为
的中点.根据图乙解答下列各题:
(1)求点到
的距离;
(2)在弧上是否存在一点
,使得
∥平面
?若存在,试确定点
的位置;若不存在,请说明理由.
(本小题满分12分)如图,圆:
.
(Ⅰ)若圆与
轴相切,求圆
的方程;
(Ⅱ)已知,圆
与
轴相交于两点
(点
在点
的左侧).过点
任作一条直线与圆
:
相交于两点
.问:是否存在实数
,使得
?若存在,求出实数
的值,若不存在,请说明理由.
(本小题满分12分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=PC=2.E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)求二面角P—AC—E的余弦值;
(3)求直线PA与平面EAC所成角的正弦值.