为进一步建设秀美、宜居的生态型环境,某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙、丙三种树每棵的价格之比为2∶2∶3,甲种树每棵200元.现计划用210 000元资金,购买这三种树共1 000棵.
(1)求乙、丙两种树每棵各多少元?
(2)若购买甲种树的棵数是乙种树的2倍,且恰好用完计划资金,求这三种树各能购买多少棵?
(3)若又增加了10 120元的购树款,在购买总棵数不变的前提下,求丙种树最多可以购买多少棵?
如图,点 、 、 、 在同一条直线上, , , .求证: .
如图1,在 中, , 是 边上的一点, 为 的中点,过点 作 的平行线交 的延长线于 ,且 ,连接 .
(1)求证: ;
(2)在图1中 上取一点 ,使 ,作 关于边 的对称点 ,连接 、 、 、 、 得图2.
①求证: ;
②设 与 相交于点 ,求证: , .
如图,在平面直角坐标系 中,平行四边形 的 边与 轴交于 点, 是 的中点, 、 、 的坐标分别为 , , .
(1)求过 、 、 三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线 上;
(3)设过 与 平行的直线交 轴于 , 是线段 之间的动点,射线 与抛物线交于另一点 ,当 的面积最大时,求 的坐标.
如图,在 中, ,以 的中点 为圆心, 为直径的圆交 于 , 是 的中点, 交 的延长线于 .
(1)求证: 是圆 的切线:
(2)若 , ,求 的长.
我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类: 类——接种了只需要注射一针的疫苗; 类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗; 类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗; 类——还没有接种.图1与图2是根据此次调查得到的统计图(不完整).
请根据统计图回答下列问题
(1)此次抽样调查的人数是多少人?
(2)接种 类疫苗的人数的百分比是多少?接种 类疫苗的人数是多少人?
(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.
(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.