某射击小组有甲、乙两名射手,甲的命中率为P1=,乙的命中率为P2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中数相等且都不少于一发,则称该射击小组为“先进和谐组”.
(1)若P2=,求该小组在一次检测中荣获“先进和谐组”的概率;
(2)计划在2013年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E(ξ)≥5,求P2的取值范围.
(本小题满分14分) 已知数列的前n项和Sn=9-6n.
(1)求数列的通项公式.
(2)设,求数列
的前n项和.
(本小题满分12分)
过点P(1,4)作直线L,直线L与x,y的正半轴分别交于A,B两点,O为原点,
①△ABO的面积为S,求S的最小值并求此时直线l的方程;
②当|OA|+|OB|最小时,求此时直线L的方程
( 12分)在△ABC中,sinA+cosA=,AC=2,AB=3,
求① tanA的值 ; ② △ABC的面积.
(本题12分)某人承揽一项业务,需做文字标牌4个,绘画标牌5个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小?
(本题12分)在△ABC中,,cosC是方程
的一个根,求①角C的度数②△ABC周长的最小值。