如图,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为E,∠ABC=45°,过E作AD的垂线交AD于F,交BC于G,过E作AD的平行线交AB于H.求证:FG2=AF·DF+BG·CG+AH·BH.
已知为坐标原点,
为椭圆
在
轴正半轴上的焦点,过
且斜率为
的直线
与
交与
、
两点,点
满足
(Ⅰ)证明:点
在
上;
(Ⅱ)设点
关于点
的对称点为
,证明:
、
、
、
四点在同一圆上。
已知函数
(Ⅰ)证明:曲线
(Ⅱ)若
求
的取值范围。
如图,是以
为直径的
上一点,
于点
,过点
作
的切线,与
的延长线相交于点
是
的中点,连结
并延长与
相交于点
,延长
与
的延长线相交于点
.
(1)求证:;
(2)求证:是
的切线;
(3)若,且
的半径长为
,求
和
的长度.
已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC≌△DCB (2)DE·DC=AE·BD.
如图:是
的两条切线,
是切点,
是
上两点,如果
,试求
的度数.