已知正数a、b、c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.
设的三个内角
所对的边分别为
.已知
.
(1)求角A的大小;(2)若,求
的最大值.
已知函数.(I)当
时,求函数
的单调区间;(II)若函数
的图象在点
处的切线的倾斜角为45o,问:m在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
已知椭圆的短轴长等于焦距,椭圆C上的点到右焦点
的最短距离为
.(Ⅰ)求椭圆C的方程;(Ⅱ)过点
且斜率为
的直线
与
交于
、
两点,
是点
关于
轴的对称点,证明:
三点共线.
如图,多面体ABCDS中,面ABCD为矩形,且
,
。(I)求多面体ABCDS的体积;(II)求AD与SB所成角的余弦值;(III)求二面角A—SB—D的余弦值。
对某校高三年级学生参加社区服务次数进行统计, 随机抽取名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中、
及图中
的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间
内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间
内的概率.