设等差数列的公差为
,且
.若设
是从
开始的前
项数列的和,即
,
,如此下去,其中数列
是从第
开始到第
)项为止的数列的和,即
.
(1)若数列,试找出一组满足条件的
,使得:
;
(2) 试证明对于数列,一定可通过适当的划分,使所得的数列
中的各数都为平方数;
(3)若等差数列中
.试探索该数列中是否存在无穷整数数列
,使得
为等比数列,如存在,就求出数列
;如不存在,则说明理由.
(本小题满分14分)
已知(
为常数,
且
),设
是首项为4,公差为2的等差数列.
(1)求证:数列{}是等比数列;
(2)若,记数列
的前n项和为
,当
时,求
;
(3)若,问是否存在实数
,使得
中每一项恒小于它后面的项?
若存在,求出实数的取值范围.
(本小题满分14分)
在直角坐标系中,以为圆心的圆与直线
相切.
(1)求圆的方程;
(2)已知、
,圆内动点
满足
,求
的取值范围.
(本小题满分14分)
已知函数
(1)若,点P为曲线
上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数上为单调增函数,试求满足条件的最大整数a.
(本小题满分14分)如图,在四棱锥中,底面
是边长为
的正方形,
、
分别为
、
的中点,侧面
,且
.
(1)求证:∥平面
;(2)求三棱锥
的体积.
(本小题满分12分)已知关的一元二次函数
,设集合
,分别从集合
和
中随机取一个数
和
得到数对
.(1)列举出所有的数对
并求函数
有零点的概率;(2)求函数
在区间
上是增函数的概率.