设椭圆的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆的离心率;
(2)若过三点的圆与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于
,求实数
的取值范围.
在中,
分别为内角
的对边,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,
,求边
的长.
如图,椭圆的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线与椭圆交于
,而与抛物线交于
两点,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线与椭圆
相交于两点
和
,
设为椭圆
上一点,且满足
(
为坐标原点),求实数
的取值范围.
已知函数,且
。
(1)若函数在
处的切线与
轴垂直,求
的极值。
(2)若函数在
,求实数a的值。
如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且
,
(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。
某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这16人的数学成绩编成如下茎叶图.
(Ⅰ)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为122分,试推算这个污损的数据是多少?
(Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.