已知是公差不为零的等差数列,
,且
成等比数列.
(1)求数列的通项公式;
(2)若,求数列
的前n项和
.
某高中三年级有一个实验班和一个对比班,各有50名同学.根据这两个班市二模考试的数学科目成绩(规定考试成绩在[120,150]内为优秀),统计结果如下:
实验班数学成绩的频数分布表:对比班数学成绩的频数分布表:
(Ⅰ)分别求这两个班数学成绩的优秀率;若采用分层抽样从实验班中抽取15位同学的数学试卷,进行试卷分析,则从该班数学成绩为优秀的试卷中应抽取多少份?
(Ⅱ)统计学中常用M值作为衡量总体水平的一种指标,已知M与分数t的关系式为:
分别求这两个班学生数学成绩的M总值,并据此对这两个班数学成绩总体水平作一简单评价.
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,
求三棱锥B-ADC的体积.
已知等比数列{}的前n项和
=
+m(m∈R).
(Ⅰ)求m的值及{}的通项公式;
(Ⅱ)设=2
-13,数列{
}的前n项和为
,求使
最小时n的值.
设
(1)解不等式;
(2)若存在实数x满足,试求实数a的取值范围。
极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为。
(1)求C的直角坐标方程:
(2)直线:
为参数)与曲线C交于A、B两点,与y轴交于E,求