如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是 棱AP,AC,BC,PB的中点.
(1)求证:DE∥平面BCP;
(2)求证:四边形DEFG为矩形;
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
(本小题满分13分)某购物广场拟在五一节举行抽奖活动,规则是:从装有编号为0,1,2,3四个小球的抽奖箱中同时抽出两个小球,两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.
(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求的值;(2)若
,且
,求
的值.
(本小题满分14分)已知函数,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n ÎN *),x1=4.
(Ⅰ)用表示xn+1;
(Ⅱ)记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若bn=xn-2,试比较与
的大小.
(本小题满分14分)已知动圆与直线相切,且过定点F(1, 0),动圆圆心为M.
(1)求点M的轨迹C的方程;
(2)若直线l与曲线C交于A、B两点,且(O为坐标原点),求证:直线l过一定点.
(本小题满分14分)如图,在四棱锥中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点,作
交PB于点F.
(I) 证明:PA∥平面EDB;
(II) 证明:PB⊥平面EFD;
(III) 求三棱锥的体积.