已知抛物线.(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;(3)若过点且相互垂直的两条直线,抛物线与交于点与交于点.证明:无论如何取直线,都有为一常数.
在中,角所对的边分别为,且满足,.(I)求的面积;(II)若,求的值.
已知各项均为正数的数列,的等比中项。 (1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn。
在中,已知,. (Ⅰ)求的值; (Ⅱ)若的面积,求的值.
设△ABC的内角A、B、C的对边长分别为a、b、c,,,求B.
在△ABC中,a, b, c分别为内角A, B, C的对边,且 (1)求A的大小;(2)求的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号