某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X |
1 |
2 |
3 |
4 |
Y |
51 |
48 |
45 |
42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。
(原创)已知{}是公比为q(q≠1)的等比数列,且存在m∈
使得
成等差数列.
(1)求q的值;
(2)若=1,
数列{
}前n项和为
,求
.
(本小题满分13分)已知椭圆的两个焦点的坐标分别为
,
,并且经过点(
,
),M、N为椭圆
上关于
轴对称的不同两点.
(1)求椭圆的标准方程;
(2)若,试求点
的坐标;
(3)若为
轴上两点,且
,试判断直线
的交点
是否在椭圆
上,并证明你的结论.
【改编题】(本大题满分13分)设函数,其中
为自然对数的底数.
(Ⅰ) 时,求曲线
在点
处的切线方程;
(Ⅱ)函数是
的导函数,求函数
在区间
上的最小值.
(Ⅲ)函数在区间
内有零点,证明:
.
(本小题共13分)如图所示,在正方体中,
分别是棱
的中点.
(Ⅰ)证明:平面平面
;
(Ⅱ)证明://平面
;
(Ⅲ)若正方体棱长为1,求四面体的体积.
(本小题满分12分)从某校高三年级800名学生中随机抽取50名测量身高.据测量,被抽取的学生的身高全部介于155cm和195cm之间,将测量结果分成八组得到的频率分布直方图如下:
(1)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少;
(2)在样本中,若学校决定身高在185cm以上的学生中随机抽取2名学生接受某军校考官进行面试,求:身高在190cm以上的学生中至少有一名学生接受面试的概率.