一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。
已知点,
,动点
的轨迹曲线
满足
,
,过点
的直线交曲线
于
、
两点.
(1)求的值,并写出曲线
的方程;
(2)求△面积的最大值.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(其中
为坐标原点),求整数
的最大值.
如图:在三棱锥D-ABC中,已知是正三角形,AB
平面BCD,
,E为BC的中点,F在棱AC上,且
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
已知 且
;
:集合
,且
.若
∨
为真命题,
∧
为假命题,求实数
的取值范围.
已知的角A、B、C所对的边分别是
,
设向量,
,
(Ⅰ)若∥
,求证:
为等腰三角形;
(Ⅱ)若⊥
,边长
,
,求
的面积.