已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.
(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;
(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;
(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.
已知函数的定义域
,若
在
上为增函数,则称
为“一阶比增函数”;若
在
上为增函数,则称
为“二阶比增函数”。把所有由“一阶比增函数”组成的集合记为
,把所有由“二阶比增函数”组成的集合记为
.
(1)已知函数,若
且
,求实数
的取值范围;
(2)已知,且存在常数
,使得对任意的
,都有
,求
的最小值.
已知椭圆的离心率为
,其左,右焦点分别为
,
,点
是坐标平面内一点,且
,
,其中
为坐标原点.
(1)求椭圆的方程;
(2)过点,且斜率为
的动直线
交椭圆于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个定点?若存在,求出点
的坐标;若不存在,请说明理由.
如图,在多面体中,
为菱形,
,
平面
,
平面
,
为
的中点,若
平面
.
(1)求证:平面
;
(2)若,求二面角
的余弦值.
甲箱子里装有3个白球个黑球,乙箱子里装有
个白球,2个黑球,在一次试验中,分别从这两个箱子里摸出一个球,若它们都是白球,则获奖
(1) 当获奖概率最大时,求的值;
(2)在(1)的条件下,班长用上述摸奖方法决定参加游戏的人数,班长有4次摸奖机会(有放回摸取),当班长中奖时已试验次数即为参加游戏人数,如4次均未中奖,则
,求
的分布列和
.
中,内角
的对边分别是
,已知
成等比数列,且
.
(1)求的值;
(2)设,求
的值.