一汽车厂生产、
、
三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆)
|
轿车![]() |
轿车![]() |
轿车![]() |
舒适型 |
![]() |
![]() |
![]() |
标准型 |
![]() |
![]() |
![]() |
按类型分层抽样的方法在这个月生产的轿车中抽取辆,其中有
类轿车
辆.
(1)求的值;
(2)用分层抽样的方法在类轿车中抽取一个容量为
的样本.将该样本看成一个总体,从中任取
辆,求至少有
辆舒适型轿车的概率;
(3)用随机抽样的方法从类舒适型轿车中抽取
辆,经检测它们的得分如下:
、
、
、
、
、
、
、
.把这
辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过
的概率
设抛物线的准线
,焦点为
,顶点为
,
为抛物线上任意一点,
,
为垂足,求
与
的交点
的轨迹方程.
甲、乙两公司生产同一种新产品,经测算,对于函数、
及任意的
,当甲公司投入
万元作宣传时,若乙公司投入的宣传费小于
万元,则乙公司有失败的风险,否则无失败的风险;当乙公司投入
万元作宣传时,若甲公司投入的宣传费小于
万元,则甲公司有失败的风险,否则无失败的风险.
(1)请解释的实际意义;
(2)当时,甲、乙两公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能地少投入宣传费用,问此时甲、乙两公司应各投入多少宣传费用?
已知:
,
,若
的充分不必要条件,求实数m的取值范围.
已知椭圆的焦点是
(1)求此椭圆的标准方程
(2)设点P在此椭圆上,且有的值
(本小题满分12分)
已知.
(1)当时,求函数
图象过的定点;
(2)当,且
有最小值2时,求
的值;
(3)当时,有
恒成立,求实数
的取值范围.