记关于的不等式
的解集为
,不等式
的解集为
.
(1)若,求
;
(2)若,求正数
的取值.
如图,三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.
(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明结论;
(3)若AB=2,求三棱锥B﹣CED的体积.
如图,正方形的边长为2.
(1)在其四边或内部取点,且
,求事件:“
”的概率;
(2)在其内部取点,且
,求事件“
的面积均大于
”的概率.
已知A、B、C是三角形ABC的三内角,且,并且
(1)求角A的大小。
(2)的递增区间。
已知函数为奇函数,且在
处取得极大值2.
(Ⅰ)求的解析式;
(Ⅱ)过点(
可作函数
图像的三条切线,求实数
的取值范围;
(Ⅲ)若对于任意的
恒成立,求实数
的取值范围.
已知直线过定点
,动点
满足
,动点
的轨迹为
.
(Ⅰ)求的方程;
(Ⅱ)直线与
交于
两点,以
为切点分别作
的切线,两切线交于点
.
①求证:;②若直线
与
交于
两点,求四边形
面积的最大值.