等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前n项和Sn·
某城市为了解决人民路拥挤现象,政府决定建设高架公路,该高架公路两端的桥墩及引桥已建好,这两桥墩相距1280米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为米的相邻两墩之间的桥面工程费用为
万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为
万元。(1)试写出
关于
的函数关系式;(2)政府至少还需投入多少万元资金才能启动此工程建设,此时新建桥墩有多少个?
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅲ)求证CE∥平面PAB.
已知⊙过点
,且与⊙
:
关于直线
对称.(Ⅰ)求⊙
的方程;(Ⅱ)设
为⊙
上的一个动点,求
的最小值;(Ⅲ)过点
作两条相异直线分别与⊙
相交于
,且直线
和直线
的倾斜角互补,
为坐标原点,试判断直线
和
是否平行?请说明理由.
已知向量=(1+tanx,1-tanx),=(sin(x-),sin(x+)).
(1)求证:⊥;(2)若x∈[-,],求||的取值范围.
(本题满分共13分)已知正项数列,函数
。(1)若正项数列
满足
(
且
),试求出
由此归纳出通项
,并证明之;(2)若正项数列
满足
(
且
),数列
满足
,其和为
,求证
。