在等差数列中,
,
.令
,数列
的前
项和为
.
(1)求数列的通项公式和
;
(2)是否存在正整数,
(
),使得
,
,
成等比数列?若存在,求出所有
的,
的值;若不存在,请说明理由.
已知函数
(1)计算的值,据此提出一个猜想,并予以证明;
(2)证明:除点(2,2)外,函数的图像均在直线
的下方.
函数的最小正周期为
,其图像经过点
(1)求的解析式;
(2)若且
为锐角,求
的值.
已知函数
(Ⅰ)若在
上为增函数,求实数
的取值范围;
(Ⅱ)当时,方程
有实根,求实数
的最大值.
已知函数.
(1)若函数在
处取得极值,且函数
只有一个零点,求
的取值范围.
(2)若函数在区间
上不是单调函数,求
的取值范围.
统计表明:某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度
(千米/每小时)的函数解析式可以表示为
,已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大速度行驶时,从甲地到乙地耗油最少?最少为多少升?