已知关于 的一元二次方程 有实数根.
(1)求 的取值范围;
(2)若该方程的两个实数根分别为 、 ,且 ,求 的值.
如图, 是 的边 上一点, , 交 于 点, .
(1)求证: ;
(2)若 , ,求 的长.
先化简,再求值: ,其中 .
已知抛物线 与 轴相交于 , 两点,与 轴交于点 ,点 是 轴上的动点.
(1)求抛物线的解析式;
(2)如图1,若 ,过点 作 轴的垂线交抛物线于点 ,交直线 于点 .过点 作 于点 ,当 为何值时, ;
(3)如图2,将直线 绕点 顺时针旋转,它恰好经过线段 的中点,然后将它向上平移 个单位长度,得到直线 .
① ;
②当点 关于直线 的对称点 落在抛物线上时,求点 的坐标.
红星公司销售一种成本为40元 件产品,若月销售单价不高于50元 件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为 (单位:元 件),月销售量为 (单位:万件).
(1)直接写出 与 之间的函数关系式,并写出自变量 的取值范围;
(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款 元.已知该公司捐款当月的月销售单价不高于70元 件,月销售最大利润是78万元,求 的值.