一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.
一边长为的正方形铁片,铁片的四角各截去一个边长为
的小正方形,然后做成一个无盖方盒.
(Ⅰ)试把方盒的体积表示为
的函数;
(Ⅱ)多大时,方盒的体积
最大?
已知是全不相等的正实数,证明:
.
如图,抛物线与
轴交于两点
,点
在抛物线上(点
在第一象限),
∥
.记
,梯形
面积为
.
(1)求面积以
为自变量的函数式;
(2)若,其中
为常数,且
,求
的最大值.
已知椭圆的离心率为
,一个焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线交椭圆
于
,
两点,若点
,
都在以点
为圆心的圆上,求
的值.
某少数民族的刺绣有着悠久的历史,如右图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.
(1)求出的值;
(2)利用合情推理的“归纳推理思想”,归纳出与
之间的关系式,并根据你得到的关系式求出
的表达式;
(3)求的值。