游客
题文

如图,在四棱锥中,底面是正方形,侧面底面分别为中点,
(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量的应用 平行线法
登录免费查看答案和解析
相关试题

选修4—5:不等式选讲
设函数
(Ⅰ)解不等式
(Ⅱ)若,使得,求实数的取值范围.

选修4—4:坐标系与参数方程
已知直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程是
(1)写出直线的极坐标方程与曲线的普通方程;
(2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.

选修4-1:几何证明选讲
如图所示,已知为圆的直径,是圆上的两个点,,交

(1)求证:是劣弧的中点;
(2)求证:

设函数
(Ⅰ)若,是否存在k和m,使得 ,若存在,求出k和m的值,若不存在,说明理由
(Ⅱ)设 有两个零点 ,且 成等差数列, 是 G (x)的导函数,求证:

已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,
(1)求抛物线的方程;
(2)设点)是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号