如下图,在平面直角坐标系中,锐角和钝角
的终边分别与单位圆交于
两点.
(1)若两点的纵坐标分别为
,求
的值;
(2)已知点是单位圆上的一点,且
,求
和
的夹角
.
已知是一元二次方程
的两根,且
,(1)求
的值;(2)求
的值.
已知
(1)化简;
(2)若且
求
的值;
(3)求满足的
的取值集合.
设函数,且
,
.
(1)求的值;
(2)当时,求
的最大值.
(本小题满分13分)已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线
的焦点,离心率
.
(1)求椭圆的标准方程;
(2)过椭圆的右焦点作与坐标轴不垂直的直线
,交椭圆于
、
两点,设点
是线段
上的一个动点,且
,求
的取值范围;
(3)设点是点
关于
轴的对称点,在
轴上是否存在一个定点
,使得
、
、
三点共线?若存在,求出定点
的坐标,若不存在,请说明理由.
(本小题满分12分)函数(
为常数)的图象过点
.
(1)求的值;
(2)函数在区间
上有意义,求实数
的取值范围;
(3)讨论关于的方程
(
为常数)的正根的个数.