某单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5.该地区汽车限行规定如下:
车尾号 |
0和5 |
1和6 |
2和7 |
3和8 |
4和9 |
限行日 |
星期一 |
星期二 |
星期三 |
星期四 |
星期五 |
现将汽车日出车频率理解为日出车概率,且A,B两车出车相互独立.
(1)求该单位在星期一恰好出车一台的概率;
(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).
在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC="14," DC=6,求AD的长.
(本小题满分14分)设函数,
的两个极值点为
,线段
的中点为
.
(1) 如果函数为奇函数,求实数
的值;当
时,求函数
图象的对称中心;
(2) 如果点在第四象限,求实数
的范围;
(3) 证明:点也在函数
的图象上,且
为函数
图象的对称中心.
(本小题满分14分)
如图,设抛物线的准线与
轴交于
,焦点为
;以
为焦点,离心率
的椭圆
与抛物线
在
轴上方的交点为
,延长
交抛物线于点
,
是抛物线
上一动点,且M在
与
之间运动.
(1)当时,求椭圆
的方程,
(2)当的边长恰好是三个连续的自然数时,
求面积的最大值.
(本小题满分13分)某园林公司计划在一块为圆心,半径为5的半圆形(如图)地上种植花草树木,其中弓形
区域用于观赏样板地,
区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1) 设,
,分别用
,
表示弓形
的面积
;
|
(2) 园林公司应该怎样规划这块土地,才能使总利润最大?(参考公式:扇形面积公式
)
![]() |
(本小题满分13分)如图6,正方形
所在平面与圆
所在平面相交于
,
线段为圆
的弦,
垂直于圆
所在平面,
垂足是圆
上异于
、
的点,
,圆
的直径为9.
(1)求证:平面平面
;
(2)求二面角的平面角的正切值.