甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(1)求乙得分的分布列和数学期望;
(2)求甲、乙两人中至少有一人入选的概率.
如图,在底面为平行四边形的四棱锥中,
,
平面
,点
是
的中点.
(1)求证:;
(2)求证:平面
;
已知两点,
,求以
为直径的圆的方程,并判断
、
、
与圆的位置关系.
如图,梯形的顶点
与顶点
分别在平面
的两侧,且梯形的两边
与
分别与
交于
两点;梯形的另两条边
的延长线分别与
交于
两点,求证:
四点共线.
已知的三个顶点
,
,
,其外接圆为圆
.
(1)求圆的方程;
(2)若直线过点
,且被圆
截得的弦长为2,求直线
的方程;
(3)对于线段上的任意一点
,若在以
为圆心的圆上都存在不同的两点
,使得点
是线段
的中点,求圆
的半径
的取值范围.
【改编】如图,已知面
,
,
;
(1)在线段上找一点M,使
面
。
(2)求由面与面
所成角的二面角的正切值。