某地为迎接2014年索契冬奥会,举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛,其得分情况如茎叶图所示:
(1)若从甲运动员的不低于80且不高于90的得分中任选3个,求其中与平均得分之差的绝对值不超过2的概率;
(2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值
的分布列与期望.
已知抛物线的焦点坐标是
,准线方程是
,求证:抛物线的方程为
.
抛物线的顶点在原点,以
轴为对称轴,经过焦点且倾斜角为
的直线,被抛物线所截得的弦长为
,试求抛物线方程.
抛物线
上点
到定点
和焦点
的距离之和的最小值为
,求此抛物线的方程.
某体育馆拟用运动场的边角地建一个矩形的健身室.如图所示,ABCD是一块边长为50 m的正方形地皮,扇形CEF是运动场的一部分,其半径为40 m,矩形AGHM就是拟建的健身室,其中G、M分别在AB和AD上,H在
上.设矩形AGHM的面积为S,∠HCF=θ,请将S表示为θ的函数,并指出当点H在
的何处时,该健身室的面积最大,最大面积是多少?
已知函数y=sin2x+
cos2x-2.
(1)用“五点法”作出函数在一个周期内的图象;
(2)求这个函数的周期和单调区间;
(3)求函数图象的对称轴方程.
(4)说明图象是由y=sinx的图象经过怎样的变换得到的.