如图,椭圆的离心率为,轴被曲线截得的线段长等于的长半轴长。
(1)求,的方程;
(2)设与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交与.
①证明:;
②记的面积分别是.问:是否存在直线,使得=?请说明理由。
(文科)已知双曲线的右焦点为
,过点
的动直线与双曲线相交于
两点,点
的坐标是
.
(I)证明为常数;
(II)若动点满足
(其中
为坐标原点),求点
的轨迹方程.
(理科)已知以原点为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(1)若点的坐标分别是
,求
的最大值;
(2)如图,点的坐标为
,
是圆
上的点,点
是点
在
轴上的射影,点
满足条件:
,求线段
的中点
的轨迹方程.
(文科)设直线与椭圆
相交于A、B两个不
同的点,与x轴相交于点F.
(I)证明:
(II)若F是椭圆的一个焦点,且,求椭圆的方程。
(理科)已知抛物线的准线与
轴交于
点,
为抛物线
的焦点,过
点斜率为
的直线与抛物线
交于
两点。
(1)若,求
的值;
(2)是否存在这样的,使得抛物线
上总存在点
满足
,若存在,求
的取值范围;若不存在,请说明理由。
某车间共有12名工人,需配备两种型号的机器,每台A型机器需2人操作,每天耗电30千瓦时,能生产出价值4万元的产品;每台B型机器需3人操作,每天耗电20千瓦时,能生产出价值3万元的产品,现每天供应车间的电量不多于130千瓦时,问这个车间如何配备这两种型号的机器,使每天的产值最大?最大产值是多少万元?