游客
题文

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A底面ABCDABDCABADAD=CD=1AA1=AB=2E为棱AA1的中点.
(1)证明B1C1CE
(2)求二面角B1-CE-C1的正弦值.
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为26,求线段AM的长.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

如图,已知椭圆Γ:=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的一个动点,满足||=2a.点P是线段F1Q与该椭圆的交点,点M在线段F2Q上,且满足·=0,||≠0.

(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设不过原点O的直线l与轨迹C交于A,B两点,若直线OA,AB,OB的斜率依次成等比数列,求△OAB面积的取值范围;
(Ⅲ)由(Ⅱ)求解的结果,试对椭圆Γ写出类似的命题.(只需写出类似的命题,不必说明理由)

如图,三棱柱中,平面, 点在线段上,且

(Ⅰ)求证:直线与平面不平行;
(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线所成的角的余弦值.

在2014年全国超级联赛上,兵乓球比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲,乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率如下表:

出场顺序
1号
2号
3号
4号
5号
获胜概率





若甲队横扫对手获胜(即3:0获胜)的概率是,比赛至少打满4场的概率为
(Ⅰ)求的值
(Ⅱ)求甲队获胜场数的分布列和数学期望

凸四边形中,其中为定点,为动点,满足.
(1)写出的关系式;
(2)设的面积分别为,求的最大值,以及此时凸四边形的面积.

(本小题满分10分)选修4-5:不等式选讲
设函数
(1)当时,求不等式的解集;
(2)若恒成立,求的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号