在2014年全国超级联赛上,兵乓球比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲,乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率如下表:
出场顺序 |
1号 |
2号 |
3号 |
4号 |
5号 |
获胜概率 |
![]() |
![]() |
![]() |
![]() |
![]() |
若甲队横扫对手获胜(即3:0获胜)的概率是,比赛至少打满4场的概率为
(Ⅰ)求的值
(Ⅱ)求甲队获胜场数的分布列和数学期望
已知,复数
,
(1)写出复数z的代数形式;
(2)当m为何值时,z=0?当m为何值时,z是纯虚数?
已知函数在
处取到极值
(1)求的解析式;
(2)设函数,若对任意的
,总存在
,使得
,求实数
的取值范围.
为了加快经济的发展,某省选择两城市作为龙头带动周边城市的发展,决定在
两城市的周边修建城际轻轨,假设
为一个单位距离,
两城市相距
个单位距离,设城际轻轨所在的曲线为
,使轻轨
上的点到
两城市的距离之和为
个单位距离,
(1)建立如图的直角坐标系,求城际轻轨所在曲线的方程;
(2)若要在曲线上建一个加油站
与一个收费站
,使
三点在一条直线上,并且
个单位距离,求
之间的距离有多少个单位距离?
(3)在两城市之间有一条与
所在直线成
的笔直公路
,直线
与曲线
交于
两点,求四边形
的面积的最大值.
设数列的前
项和为
,且
.
(1)求
(2)求证:数列是等比数列;
(3)求数列的前
项和
.
如图,在四棱锥中,底面
是直角梯形,
∥
,
平面
,点
是
的中点,且
.
(1)求四棱锥的体积;
(2)求证:∥平面
;
(3)求直线和平面
所成的角是正弦值.