已知函数
.
(1)求函数
的单调区间;
(2)证明:对任意的
,存在唯一的
,使
.
(3)设(2)中所确定的
关于
的函数为
,证明:当
时,有
.
南充市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为,
,经测量
米,
米,
米,
.
(Ⅰ)求的长度;
(Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由)?最低造价为多少?()
已知是正数列组成的数列,
,且点
在函数
的图像上,
(Ⅰ)求的通项公式;
(Ⅱ)若数列满足
,
,求证:
.
设函数f(x)=.
(Ⅰ)当a=-5时,求函数f(x)的定义域;
(II)若函数f(x)的定义域为R,试求a的取值范围.
已知曲线的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)把的参数方程化为极坐标方程;
(Ⅱ)求与
交点的极坐标(
).
如图,为△
外接圆的切线,
的延长线交直线
于点
,
分别为弦
与弦
上的点,且
,
四点共圆.
(Ⅰ)证明:是△
外接圆的直径;
(Ⅱ)若,求过
四点的圆的面积与△
外接圆面积的比值.