已知在平面直角坐标系中,圆
的方程为
.以原点
为极点,以
轴正半轴为极轴,且与直角坐标系取相同的单位长度,建立极坐标系,直线
的极坐标方程为
.
(1)求直线的直角坐标方程和圆
的参数方程;
(2)求圆上的点到直线
的距离的最小值.
.设动点到定点
的距离比它到
轴的距离大
.
(Ⅰ)求动点的轨迹方程
;
(Ⅱ)设过点的直线
交曲线
于
两点,
为坐标原点,求
面积的最小值.
已知箱子里装有3个白球、3个黑球,这些球除颜色外完全相同,每次游戏从箱子里取出2个球,若这两个球的颜色相同,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中获奖的概率;
(Ⅱ)求在3次游戏中获奖次数的分布列及数学期望
已知圆和直线
.
⑴证明:不论取何值,直线
和圆
总相交;
⑵当取何值时,圆
被直线
截得的弦长最短?并求最短的弦的长度.
已知函数f(x)=ax+(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
在四棱锥P-ABC中,底面ABCD是矩形,PA平面ABCD,M,N分别是AB,PC的中点。
(1)求证:MN∥平面PAD。
(2)求证:MNCD.
(3)若PD与平面ABCD所成的角为450,
求证:MN平面PCD.