假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为,记此时教室里敞开的窗户个数为X.
(1)求X的分布及数学期望;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
在△中,角
,
,
所对的边分别为
,
,
.
(1)若,求角
;
(2)若,
,且△
的面积为
,求
的值.
设向量a=(2,sinθ),b=(1,cosθ),θ为锐角(1)若a·b=,求sinθ+cosθ的值;(2)若a//b,求sin(2θ+
)的值.
已知函数在
处的切线方程为
.
(1)求函数的解析式;
(2)若关于的方程
恰有两个不同的实根,求实数
的值;
(3)数列满足
,
,求
的整数部分.
已知是定义在
上的奇函数,当
时,
.
(1)求;
(2)求的解析式;
(3)若,求区间
.
对于函数,若存在实数对(
),使得等式
对定义域中的每一个
都成立,则称函数
是“(
)型函数”.
(1) 判断函数是否为 “(
)型函数”,并说明理由;
(2) 若函数是“(
)型函数”,求出满足条件的一组实数对
;
(3)已知函数是“
型函数”,对应的实数对
为
,当
时,
,若当
时,都有
,试求
的取值范围.