游客
题文

在直角坐标系xOy中,直线l的方程为x-y+2=0,
曲线C的参数方程为 (α为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分14分)
对函Φx),定义fkx)=Φxmk)+nk(其中x∈(mk
mmk],kZm>0,n>0,且mn为常数)为Φx)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.
(1)当Φx)=2x时 ①求f0x)和fkx的解析式; ②求证:Φx)的各阶阶梯函数图象的最高点共线;

(本小题满分12分)设直线l(斜率存在)交抛物线y2=2pxp>0,且p是常数)于两个不同点Ax1y1),Bx2y2),O为坐标原点,且满足x1x2+2(y1y2).
(1)求证:直线l过定点;
(2)设(1)中的定点为P,若点M在射线PA上,满足,求点M
的轨迹方程.

(本小题满分12分)已知等差数列{an2}中,首项a12=1,公差d=1,an>0,nN*
(1)求数列{an}的通项公式;
(2)设bn,数列{bn}的前120项和T120

(本小题满分12分)如图,在四边形ABCD中,ACBD,垂足为OPO⊥平面ABCDAOBODO=1,COPO=2,E是线段PA上的点,AEAP=1∶3.
(1)求证:OE∥平面PBC
(2)求二面角DPBC的大小.

(本小题满分12分)已知向量=(sin2xcos2x),=(cossin),函数fx)=+2a(其中a为实常数)
(1)求函数fx)的最小正周期;
(2)若x∈[0,]时,函数fx)的最小值为-2,求a的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号